/ 城寒 / ML - iForest (Isolation Forest)

ML - iForest (Isolation Forest)

2018-03-04 posted in [MachineLearning]

iForest(Isolation Forest) 孤立森林异常检测

原理

参考:Ye Zhu

iForest (Isolation Forest)孤立森林 是一个基于Ensemble的快速异常检测方法,具有线性时间复杂度和高精准度,是符合大数据处理要求的state-of-the-art算法参考:Outlier Analysis。其可以用于网络安全中的攻击检测,金融交易欺诈检测,疾病侦测,和噪声数据过滤等。本文将通俗解释实现方法和日常运用,即无需深厚的数学功底。

首先,我们先了解下该算法的动机。目前学术界对异常(anomaly detection)的定义有很多种,iForest 适用与连续数据(Continuous numerical data)的异常检测,将异常定义为“容易被孤立的离群点 (more likely to be separated)”——可以理解为分布稀疏且离密度高的群体较远的点。用统计学来解释,在数据空间里面,分布稀疏的区域表示数据发生在此区域的概率很低,因而可以认为落在这些区域里的数据是异常的。

不同算法对异常的判断结果示例Outlier detection with several methods Outlier detection with several methods

iForest属于Non-parametric和unsupervised的方法,即不用定义数学模型也不需要有标记的训练。对于如何查找哪些点是否容易被孤立(isolated),iForest使用了一套非常高效的策略。假设我们用一个随机超平面来切割(split)数据空间(data space), 切一次可以生成两个子空间(想象拿刀切蛋糕一分为二)。之后我们再继续用一个随机超平面来切割每个子空间,循环下去,直到每子空间里面只有一个数据点为止。直观上来讲,我们可以发现那些密度很高的簇是可以被切很多次才会停止切割,但是那些密度很低的点很容易很早的就停到一个子空间了。上图里面黑色的点就很容易被切几次就停到一个子空间,而白色点聚集的地方可以切很多次才停止。

步骤

  1. 从训练数据中随机选择n个点样本点作为subsample,放入树的根节点。
  2. 随机指定一个维度(attribute),在当前节点数据中随机产生一个切割点p(切割点产生于当前节点数据中指定维度的最大值和最小值之间)
  3. 以此切割点生成了一个超平面,然后将当前节点数据空间划分为2个子空间:把指定维度里小于p的数据放在当前节点的左孩子,把大于等于p的数据放在当前节点的右孩子。
  4. 在孩子节点中递归步骤2和3,不断构造新的孩子节点,直到 孩子节点中只有一个数据(无法再继续切割) 或 孩子节点已到达限定高度 。

获得t个iTree之后,iForest 训练就结束,然后我们可以用生成的iForest来评估测试数据了。对于一个训练数据x,我们令其遍历每一棵iTree,然后计算x最终落在每个树第几层(x在树的高度)。然后我们可以得出x在每棵树的高度平均值,即 the average path length over t iTrees。* 值得注意的是,如果x落在一个节点中含多个训练数据,可以使用一个公式来修正x的高度计算,详细公式推导见原论文。

补充

  1. iForest具有线性时间复杂度。因为是ensemble的方法,所以可以用在含有海量数据的数据集上面。通常树的数量越多,算法越稳定。由于每棵树都是互相独立生成的,因此可以部署在大规模分布式系统上来加速运算。
  2. iForest不适用于特别高维的数据。由于每次切数据空间都是随机选取一个维度,建完树后仍然有大量的维度信息没有被使用,导致算法可靠性降低。高维空间还可能存在大量噪音维度或无关维度(irrelevant attributes),影响树的构建。对这类数据,建议使用子空间异常检测(Subspace Anomaly Detection)技术。此外,切割平面默认是axis-parallel的,也可以随机生成各种角度的切割平面,详见“On Detecting Clustered Anomalies Using SCiForest”。
  3. iForest仅对Global Anomaly 敏感,即全局稀疏点敏感,不擅长处理局部的相对稀疏点 (Local Anomaly)。目前已有改进方法发表于PAKDD,详见“Improving iForest with Relative Mass”。
  4. iForest推动了重心估计(Mass Estimation)理论发展,目前在分类聚类和异常检测中都取得显著效果,发表于各大顶级数据挖掘会议和期刊(如SIGKDD,ICDM,ECML)。

论文

Isolation Forest Isolation-based Anomaly Detection

sklearn 使用

sklearn.ensemble.IsolationForest

class sklearn.ensemble.IsolationForest(
    n_estimators=100,   # 判决树的数量
    max_samples=auto, # 每个树的样本数
    contamination=0.1,  # 异常比例
    max_features=1.0,   # 每个树的维度数
    bootstrap=False,    # 一棵树选择样本时是否进行由放回的采样
    n_jobs=1,           # 任务并行数
    random_state=None,  # 随机数生成方法,默认np.random
    verbose=0           # 是否输出训练日志
)